Math, asked by nikhil3890, 1 year ago

if x^2+1/25x^2=43/5. find. x^3+1/125x^3

Answers

Answered by hukam0685
87

Answer:

{x}^{3}  +  \frac{1}{125 {x}^{3} } =  ± \frac{126}{5}  \\

Step-by-step explanation:

If

 {x}^{2}  +  \frac{1}{25 {x}^{2} }  =  \frac{43}{5}  \\  \\

To find the value of

 {x}^{3}  +  \frac{1}{125 {x}^{3} }

First find the value of

(x +  \frac{1}{5x} ) \\  \\ for \: that \\ convert \:  {x}^{2}   +  \frac{1}{25 {x}^{2} } \: into \: complete \: square \\  \\  {x}^{2}  + 2x \frac{1}{5x}  +  \frac{1}{25 {x}^{2} }  =  \frac{43}{5}  +  \frac{2}{5}  \\  \\  {(x +  \frac{1}{5x}) }^{2}  =  \frac{45}{5}  \\  \\ {(x +  \frac{1}{5x}) }^{2} =  {(3)}^{2}  \\  \\ x +  \frac{1}{5x}  =  ± 3 \\  \\

So,

 {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} ) \\  \\ {x}^{3}  +  ({ { \frac{1}{5x} })^{3} } = (x +  \frac{1}{5x} )( {x}^{2}  - x( \frac{1}{5x} ) +  \frac{1}{25 {x}^{2} }  \\  \\  = 3( \frac{43}{5}  -  \frac{1}{5} ) \\  \\  = 3 \times  \frac{43 - 1}{5}  \\  \\ {x}^{3}  +  \frac{1}{125 {x}^{3} }=  \frac{126}{5}  \\  \\ or \\  \\ {x}^{3}  +  \frac{1}{125 {x}^{3} } = -  \frac{126}{5}

Hope it helps you.

Answered by owaisabdaal367
17

Answer:

125/5

Step-by-step explanation:

x^2+1/25x^2=43/5

IF

x^2+2x1/5+1/25=43/5+2/5

(x+1/5x)^2=45/5

(x+1/5x)=±9

THEN

x^3+1/125x^3=(x+1/5x)[x^2-x(1/5x)+(1/25x)]

x^3+1/125x^3=3(43/5-1/5)

x^3+1/125x^3=3(42/5)

x^3+1/125x^3=3×42/5

x^3+1/125x^3=126/5

[126/5]

THANK YOU

Please like the answer

Similar questions