if(x^2-1) is a factor of ax^4+bx^3+cx^2+dx+e.prove that a+c+e=b+d=0
Answers
Step-by-step explanation:
We are given,
(x² - 1) if a factor of ax⁴ + bx³ + cx² + dx + e
Thus, if it is a factor
x² - 1 = 0
x² = 1
x = √1
x = +1 or -1
Let's take x = -1
Let p(x) = ax⁴ + bx³ + cx² + dx + e
We know that,
If x = -1 is a solution of p(x), then p(-1) = 0
∴ p(-1) = a(-1)⁴ + b(-1)³ + c(-1)² + d(-1) + e
Now, all the powers with even numbers will be positive and odd numbered power will be negative.
For ex:- (-1)⁴ = (-1) × (-1) × (-1) × (-1)
= 1 × (-1) × (-1)
= (-1) × (-1)
= 1
(-1)³ = (-1) × (-1) × (-1)
= 1 × (-1)
= (-1)
Similarly,
0 = a - b + c - d + e
Taking all the negative terms to the Left we get,
a + c + e = b + d
Hence proved
Hope it helped and you understood it........All the best
Given:
x² -1 is a factor of P(x) = ax⁴ +bx³ + cx²+dx +e
if x² -1 is a factor of P(x) then P(±1) = 0
x² -1 = 0
or, x² = 1
or, x = ± 1
substituting value of x in P(X)
P(x) = ax⁴ +bx³ + cx²+dx +e
or, P(1) : a(1)⁴ + b(1)³ + c (1)²+dx + e = 0
or, P(1) : a + b +c+d+e = 0 ------- equ(1)
Simlarly,
P(-1) : a(-1)⁴ + b(-1)³ + c (-1)²+d(-1) + e = 0
or, P(-1): a -b +c-d + e = 0
or, P(-1): a + c+ e = b +d ------- equ(2)
From equ (1) & (2) , We get
a + c +e = b + d = 0