If x^2-1 is a factor of ax^4+bx^3+cx^2+dx+e then find a+c+e=b+d=0
Answers
Answered by
461
Given : x 2 – 1 is a factor of f(x) = ax 4 + bx 3 +cx 2 + dx + e
Now (x 2 – 1) can be written as (x + 1) (x – 1)
⇒ (x – 1) and (x + 1) are factors of f(x)
⇒ f(–1) = 0
⇒ a(–1)4 + b(–1)3 + c(–1)2 + d(–1) + e = 0
⇒ a – b + c – d + e = 0
⇒ a + c + e = b + d ..... (1)
and f (1) = 0
⇒ a(1)4 + b(1)3 + c(1)2 + d(1) + e = 0
⇒ a + b + c + d + e = 0
⇒ b + d + b + d = 0 ( from (1) )
⇒ 2 (b + d) = 0
⇒ b + d = 0 ..... (2)
from (1) and (2) we get
a + c + e = b + d = 0
Answered by
220
Since x2 - 1 = (x - 1) is a factor of
p(x) = ax4 + bx3 + cx2 + dx + e
∴ p(x) is divisible by (x+1) and (x-1) separately
⇒ p(1) = 0 and p(-1) = 0
p(1) = a(1)4 + b(1)3 + c(1)2 + d(1) + e = 0
⇒ a + b + c + d + e = 0 ---- (i)
Similarly, p(-1) = a (-1)4 + b (-1)3 + c (-1)2 + d (-1) + e = 0
⇒ a - b + c - d + e = 0
⇒ a + c + e = b + d ---- (ii)
Putting the value of a + c + e in eqn , we get
a + b + c + d + e = 0
⇒ a + c + e + b + d = 0
⇒ b + d + b + d = 0
⇒ 2(b+d) = 0
⇒ b + d = 0 ---- (iii)
comparing equations (ii) and (iii) , we get
a + c + e = b + d = 0
Similar questions