Math, asked by vikaskadam5710, 9 months ago

If X = √2 -1 then find the value of x^2 + 1/x^2

Answers

Answered by Anonymous
2

Solution:-

Given:-

 \rm \: x =  \sqrt{2}  - 1

To find;

 \rm \:  {x}^{2}  +  \frac{1}{ {x}^{2} }

Put the value of x on equation

 \rm \: ( \sqrt{2}  - 1) {}^{2}  +  \frac{1}{ ( \sqrt{2}  - 1) {}^{2} }

Using this identity

 \rm(a - b) {}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

We get,

 \rm \: ( \sqrt{2} ) {}^{2}  + 1 - 2 \sqrt{2}  +  \frac{1}{ ( \sqrt{2} ) {}^{2}  + 1 - 2 \sqrt{2}}

 \rm \: 3 - 2 \sqrt{2}  +  \frac{1}{ 3 - 2 \sqrt{2}}

Taking lcm

 \rm  \frac{ (3 - 2 \sqrt{2})( 3 - 2 \sqrt{2} ) + 1}{ 3 - 2 \sqrt{2}}

 \rm \:  \frac{( 3 - 2 \sqrt{2}) {}^{2} + 1 }{ 3 - 2 \sqrt{2}}

 \rm \:  \frac{(3) {}^{2}  + (2 \sqrt{2} ) {}^{2}  - 2 \times 3 \times 2 \sqrt{2} + 1 }{ 3 - 2 \sqrt{2}}

 \rm \:  \frac{9 + 8 - 12 \sqrt{2} + 1 }{ 3 - 2 \sqrt{2}}

 \rm \:  \frac{18 - 12 \sqrt{2} }{ 3 - 2 \sqrt{2}}

Taking common

 \rm \:  \frac{6( 3 - 2 \sqrt{2})}{ 3 - 2 \sqrt{2}}

Answer:- 6

Similar questions