Math, asked by Abyjay, 1 year ago

if x=√2+1 then prove that x^2+{1/x^2}=6

Attachments:

Answers

Answered by abhi569
1

x =  \sqrt{2}  + 1 \\  \\  \frac{1}{x}  =   \frac{1}{ \sqrt{2}  + 1} \times  \frac{ \sqrt{2} - 1 }{ \sqrt{2} - 1 }  \\  \\  \\  =>  \frac{1}{x}  =   \frac{ \sqrt{2}  - 1}{ {( \sqrt{2} )}^{2} -  {1}^{2}  }  \\  \\  \\ =>  \frac{1}{x}  =  \frac{ \sqrt{2}  - 1}{2 - 1}  \\  \\  \\  = >  \frac{1}{x}  =  \sqrt{2}  - 1 \\  \\  \\  \\ x +  \frac{1}{x}  \\  \\  =  > \sqrt{2}   + 1 +  \sqrt{2}   - 1 \\  \\  =>  2\sqrt{2}  \\  \\  \\ x +  \frac{1}{x}  = 2 \sqrt{2}
.
Square on both sides,


 {x }^{2}  +  \frac{1}{ {x}^{2} }  + 2 =   {(2 \sqrt{2} )}^{2}  \\  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 8 - 2 \\  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 6



Hence, proved.

Abyjay: appreciate it
Answered by ashjha2000pbcsd9
1
x=√2-1 and 1/x =√2-1
Attachments:
Similar questions