IF x^2 + 1/x^2 =10, then x+ 1/x
Answers
Answered by
9
Answer :-
Value of x + 1/x is 2√3.
Explanation :-
We know that
(a + b)² = a² + b² + 2ab
Substitue a = x and b = 1/x in the above identity
⇒ (x + 1/x)² = (x)² + (1/x)² + 2(x)(1/x)
⇒ (x + 1/x)² = x² + 1²/x² + 2
⇒ (x + 1/x)² = x² + 1/x² + 2
Here
- x² + 1/x² = 10
By substituting given value in the above equation
⇒ (x + 1/x)² = 10 + 2
⇒ (x + 1/x)² = 12
⇒ x + 1/x = √12
⇒ x + 1/x = √(4 * 3)
⇒ x + 1/x = √4 * √3
[∵ √ab = √a * √b]
⇒ x + 1/x = 2 * √3
⇒ x + 1/x = 2√3
∴ the value of x + 1/x is 2√3.
Similar questions