Math, asked by shivanshigoyal, 10 months ago

....................
If x^2 + 1/x^2=14, find the value ofx^3 + 1/x^3

Answers

Answered by Anonymous
10

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\sf{{x}^{3} +  \dfrac{1}{ {x}^{3}} = 52}}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :- \sf{{x}^{2} +  \dfrac{1}{ {x}^{2} } = 14}

To find :- \sf{{x}^{3} +  \dfrac{1}{ {x}^{3} }}

Solution :-

 {x}^{2} +  \dfrac{1}{ {x}^{2} } = 14

Now add 2 on both sides

 {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2 = 14 + 2

 {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2 = 16

Now it can be written as,

 {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2(x)( \dfrac{1}{x}) = 16

We know that, (x + y)² = x² + y² + 2xy

Here x = x, y = 1/x

By substituting the values in the identity we have,

(x +  \dfrac{1}{x})^{2} = 16

x +  \dfrac{1}{x} =  \sqrt{16}

x +  \dfrac{1}{x} = 4

Now, \boxed{\sf{x +  \dfrac{1}{x} = 4}}

By cubing on both sides,

 {(x +  \dfrac{1}{x})}^{3} =  {4}^{3}

 {(x +  \dfrac{1}{x})}^{3} = 64

We know that, (x + y)³ = x³ + y³ + 3xy(x + y)

Here x = x, y = 1/x

By substituting the values in the identity we have,

 {x}^{3} +  \dfrac{1}{ {x}^{3} } + 3(x)( \dfrac{1}{x})(x +  \dfrac{1}{x}) = 64

 {x}^{3} +  \dfrac{1}{ {x}^{3} } + 3(x +  \dfrac{1}{x}) = 64

 {x}^{3} +  \dfrac{1}{ {x}^{3} } + 3(4) = 64

[Since \bf{x +  \dfrac{1}{x} = 4} ]

 {x}^{3} +  \dfrac{1}{ {x}^{3} } + 12 = 64

 {x}^{3} +  \dfrac{1}{ {x}^{3} } = 64 - 12

 {x}^{3} +  \dfrac{1}{ {x}^{3} } = 52

\Huge{\boxed{\sf{{x}^{3} +  \dfrac{1}{ {x}^{3}} = 52}}}

\mathfrak{\large{\underline{\underline{Identity \: used:-}}}}

1. (x + y)² = x² + y² + 2xy

2. (x + y)³ = x³ + y³ + 3xy(x + y)

Answered by DhanyaDA
12

ANSWER:

 {x}^{2}  +  \dfrac{1}{x^{2} }  = 14

REQUIRED TO FIND:

we need to find the value of

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }

METHOD:

in the attachment

first they have given us the value of

x^{2}  +  \dfrac{1}{x ^{2} }  = 14

we are going to add 2 on both sides

so that this will become of the form

 {(a + b)}^{2}

so when we solve we get two values of

x +  \dfrac{1}{x}

so we should substitute both the values or just take 4

IDENTITIES USED:

 >  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 {(a + b}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)

Attachments:
Similar questions