Math, asked by sahnianushka36, 1 year ago

if x^2+1/x^2 =146 find x^3-1/x^3

Answers

Answered by snehitha2
58
x²+1/x² = 146

(x)² + (1/x)² = 146

x²+(1/x)²+ 2(x)(1/x) - 2(x)(1/x) = 146

(x-1/x)²+2 = 146

(x-1/x)² = 146-2

x-1/x = √144

x-1/x = 12

(a³-b³)= (a-b)(a²+ab+b²)

(x³-(1/x)³) = (x-1/x)[x²+(x)(1/x)+(1/x)²]

→ (x³-1/x³) = (12)(x²+1+1/x²)

→ (x³-1/x³) = (12)(146+1) {x²+1/x² = 146}

→ (x³-1/x³) = 12(147) = 1764

Hope it helps
Answered by aquialaska
18

Answer:

Value of x^3-\frac{1}{x^3}\:is\:1692

Step-by-step explanation:

Given: x^2+\frac{1}{x^2}=146

To find: x^3-\frac{1}{x^3}

We use the identity,

( a - b )² = a² + b² - 2ab

put a = x and b = 1/x

we have,

(x-\frac{1}{x})^2=x^2+(\frac{1}{x})^2-2\times x\times\frac{1}{x}

(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2

(x-\frac{1}{x})^2=146-2

x-\frac{1}{x}=\sqrt{144}

x-\frac{1}{x}=12

Now, we use (a - b)³ = a³ - b³ -3ab( a - b )

put a = x  and b = 1/x

(x-\frac{1}{x})^3=x^3-(\frac{1}{x})^3-3\times x\times\frac{1}{x}(x-\frac{1}{x})

(12)^3=x^3-\frac{1}{x^3}-3(12)

1728=x^3-\frac{1}{x^3}-36

x^3-\frac{1}{x^3}=1728-36

x^3-\frac{1}{x^3}=1692

Therefore, Value of x^3-\frac{1}{x^3}\:is\:1692

Similar questions