Math, asked by janvee20, 4 months ago

if x^2+1/x^2=18, then the value of x-1/x will be-​

Answers

Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{ {x}^{2}  + \dfrac{1}{ {x}^{2} } = 18 }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find \:  - \begin{cases} &\sf{x -  \dfrac{1}{x} }  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given that

\rm :\implies\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  = 18

On Subtracting 2 on both sides, we get

\rm :\implies\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  - 2 = 18 - 2

\rm :\implies\: {x}^{2}  + \dfrac{1}{ {x}^{2} }   - 2 \times 1= 16

\rm :\implies\: {x}^{2}  + \dfrac{1}{ {x}^{2} } - 2 \times x \times \dfrac{1}{x}   = 16

\rm :\implies\: {(x - \dfrac{1}{x}) }^{2}  = 16

\rm :\implies\:x - \dfrac{1}{x}  =  \:  \pm \: 4

Similar questions