Math, asked by 184104, 3 months ago

If x^2+(1/x)^2=23,find the value of x-1/x​

Attachments:

Answers

Answered by ranapiyush559
0

Answer:

please mark me as branliest

Step-by-step explanation:

likhne main bada  time lgta hai

Attachments:
Answered by Dinosaurs1842
5

given :

 {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 23

to find :

x  -   \frac{1}{x}

-------------------------------------------------------------------------------------------------------------------------------

Identity to use : (a-b)² = a² - 2ab + b²

( {x -  \dfrac{1}{x} })^{2}  =  {x}^{2}   -  2(x)( \dfrac{1}{x}) +  (\dfrac{1}{x})^{2}

x and 1/x gets cancelled in -2(x)(1/x)

( {x -  \dfrac{1}{x} })^{2}  =  {x}^{2}  - 2+  \dfrac{1}{ {x}^{2} }

by rearranging,

( {x -  \dfrac{1}{x}) }^{2}  =  {x}^{2}  +  \dfrac{1}{{x}^{2} }  - 2

substituting the value of x² + 1/x² as 23

( {x -  \frac{1}{x}) }^{2}  = 23 - 2

( {x -  \dfrac{1}{x} })^{2}  = 21

( {x -  \dfrac{1}{x} })  =  {21}^{ \frac{1}{2} }

hence the value of x + 1/x = √21

----------------------------------------------------------------------------------------------------------------------------------

Verification :

By substituting the values,

(x -  \dfrac{1}{x}) ^{2}  =  {x}^{2}  - 2(x)( \dfrac{1}{x}) +  (\dfrac{1}{x})^{2}

substituting x-1/x for √21

(21^{ \frac{1}{2} }) ^{2}   =  {x}^{2}  - 2 +  \dfrac{1}{ {x}^{2} }

21 =  {x}^{2}   - 2 +  \cfrac{1}{ {x}^{2} }

21 + 2 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

23 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Therefore verified.

-------------------------------------------------------------------------------------------------------------------------------------

Some more identities :

(a+b)² = a² + 2ab + b²

a²-b² = (a+b)(a-b)

(x+a)(x+b) = x² + x(a+b) + (ab)

(a+b)³ = a³ + 3a²b + 3ab² + b³

(a-b)³ = a³ - 3a²b + 3ab² - b³

a³+b³ = (a+b)(a²-ab+b²)

a³-b³ = (a-b)(a²+ab+b²)

(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca

a³+b³+c³ - 3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)

Conditional identity:

a³ + b³ c³ = 3abc if a+b+c = 0

_____________________________________________________________________

Similar questions