If x^2 + 1/x^2=23 find the value of (x^2-1/x^2)
Answers
Answered by
0
Answer:
Step-by-step explanation:
x^4 + 1 = 23x^2
x^4 - 23x^2 + 1 = 0
let x^2 = y
y^2 -23y + 1 = 0
Applying quadratic formula gives:
y = (23 - 5√21)/2 and y = (23 + 5√21)/2
y = x^2
so x^2 = (23 - 5√21)/2 and x^2 = (23 + 5√21)/2
x^2 - 1/x^2 = (23 - 5√21)/2 - 2/(23 - 5√21) = [(23 - 5√21)^2 - 2(23 - 5√21)]/2(23 - 5√21) = (23 - 5√21)[(23 - 5√21) - 2]/2(23 - 5√21) = (21 - 5√21)/2
and
x^2 - 1/x^2 = (23 + 5√21)/2 - 2/(23 + 5√21) = [(23 + 5√21)^2 - 2(23 + 5√21)]/2(23 + 5√21) = (23 + 5√21)[(23 + 5√21) - 2]/2(23 + 5√21) = (21 + 5√21)/2
Similar questions