Math, asked by gup4ta6chhchetaprinh, 1 year ago

If x 2 +1/x 2 =27, find x-1/x.

Answers

Answered by vsks2403
498
[tex] x^{2} + \frac{1}{ x^{2} } = 27 x^{2} + \frac{1}{ x^{2} } + 2 (x) ( \frac{1}{x}) - 2 (x)( \frac{1}{x} ) = 27 x^{2} + ( \frac{1}{ x^{2} } + 2 ( x - \frac{1}{x} = 27 (x - 1/ x )^{2} = 27 -2 ( x - 1/x)^{2} + \sqrt{25} x - 1/x = + or - 5 [/tex]

vsks2403: ans is + or - 5
Answered by mindfulmaisel
356

The value of \bold{x-\frac{1}{x} \text { is } 5}.

To find:

Find x-\frac{1}{x}

Solution:

Given: x^{2}+\frac{1}{x^{2}}=27

We know that (a-b)^{2}=a^{2}+b^{2}-2 a b

Putting a=x, b=\frac{1}{x}

\left(x-\frac{1}{x}\right)^{2}

=x^{2}+\frac{1}{x^{2}}-2 \times x \times \frac{1}{x}

=x^{2}+\frac{1}{x^{2}}-2

=27-2\ (Given\ that\ x^{2}+\frac{1}{x^{2}}=27)

=25  

Hence, \left(x-\frac{1}{x}\right)^{2}=25

\left(x-\frac{1}{x}\right)^{2}=(5)^{2}

Taking square root of both sides, we get

\bold{x-\frac{1}{x}=5}

Similar questions