Math, asked by kannanchellappan2012, 1 year ago

if x^2+1/x^2=34,find the value of x^3+1/x^3-9,considering only the positive value of x+1/x​

Answers

Answered by LovelyG
9

Answer:

189

Step-by-step explanation:

Given that;

 \tt {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 34

On adding 2 both sides ;

 \tt x^{2}  +  \frac{1}{ {x}^{2}} + 2 = 34 + 2 \\  \\ \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \: . \: x \: . \:  \frac{1}{x}  = 36 \\  \\ \tt (x +  \frac{1}{x} )^{2}  = 36 \\  \\ \tt x +  \frac{1}{x}  =  \pm \sqrt{36}  \\  \\ \tt x +  \frac{1}{x}  = 6 \:  \: (taking \: positive \: value)

Now, on cubing both sides ;

\rightarrow \tt \left( x +  \frac{1}{x} \right)^{3}  = (6) {}^{3}  \\  \\  \tt  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x} ) = 216 \\  \\ \tt  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 6 = 216 \\  \\ \tt  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 18 = 216 \\  \\ \tt  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 216 - 18 \\  \\ \tt  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 198

Now , on subtracting 9 both sides -

 \implies \tt  {x}^{3}  +  \frac{1}{ {x}^{3} }   - 9 = 198 - 9 \\  \\  \implies \tt  {x}^{3}  +  \frac{1}{ {x}^{3} }   - 9 =189

Hence, the answer is 189.

Similar questions