if x^2+1/x^2=34 then find the value of x^3+1/x^3 please tell fast
Answers
Answered by
7
Answer :
x³ + 1/x³ = 198
Solution :
- Given : x² + 1/x² = 34
- To find : x³ + 1/x³ = ?
We know that ,
(A + B)² = A² + B² + 2AB
Thus ,
=> (x + 1/x)² = x² + (1/x)² + 2•x•(1/x)
=> (x + 1/x)² = x² + 1/x² + 2
=> (x + 1/x)² = 34 + 2
=> (x + 1/x)² = 36
=> x + 1/x = √36
=> x + 1/x = 6
Now ,
Cubing both the sides , we get ;
=> (x + 1/x)³ = 6³
=> x³ + (1/x)³ + 3•x•(1/x)•(x + 1/x) = 216
=> x³ + 1/x³ + 3•1•6 = 216
=> x³ + 1/x³ + 18 = 216
=> x³ + 1/x³ = 216 - 18
=> x³ + 1/x³ = 198
Hence ,
x³ + 1/x³ = 198
Similar questions