Math, asked by Sonamscales14, 10 months ago

If x^2+1/x^2=38. Find the value of.. x-1/x

Answers

Answered by BrainlyTornado
3

 {x}^{2}   +  \frac{1}{ {x}^{2} }  = 38 \\ {x}^{2}   +  \frac{1}{ {x}^{2} } - 2  = 38 - 2 \\  {(x -  \frac{1}{x} )}^{2}  = 36 \\ x -  \frac{1}{x}  = 6

Answered by nilesh102
2

 \mathfrak{  \fcolorbox {blue}{white} { \red{Solution:-  } } }

 \red{ =  > }\huge{{x}^{2}  +  \frac{ 1}{ {x}^{2} } = 38  } \\  \\ \huge \mathfrak{ \red{substract \: 2 \: on \: both \: sides.} } \\  \\ \red{ =  > }\huge{  {x}^{2} +   \frac{  1 }{ {x}^{2} } - 2 } = 38 - 2 \\  \\ \red{ =  > }\huge{ {x}^{2}   +  \frac{1}{ {x}^{2} }  - 2 = 36} \\  \\ \huge  \mathfrak{ \red{we \: can \: wrte \: it \: as\: }} \\  \\ \red{ =  > }\huge{  {x}^{2} - 2 +  \frac{1}{ {x}^{2} }  = 36 } \\  \\  \mathfrak{\red{ we \: know \: { ({a - b})^{2} } } =  {a}^{2} - 2ab +  {b}^{2}  } \\  \\  \mathfrak \red{ \huge{now}} \\  \\ \red{ =  > }\huge{ ( {x -  \frac{1}{x} })^{2} } = 36 \\  \\ \red{ =  > }\huge{ x -  \frac{1}{x} } =  \sqrt{36}  \\  \\ \red{ =  > }\huge{x -  \frac{1}{x}  = 6 } \\  \\  \fcolorbox{blue} {white}{i \: hope \: it \: helps \: you.}

Similar questions