Math, asked by kabeerkaushik, 8 months ago

if x^2 + 1/x^2 = 38 then find x^2 - 1/x^2

Answers

Answered by jaiusankar
1

Step-by-step explanation:

x^2 + 1/x^2 = 38

(x^2 - 1/x^2)²+2(x²)(1/x²) = 38

(x^2 - 1/x^2)² = 38-2

x^2 1/x^2 = √36 = 6..

Answered by Anonymous
1

Answer:

±12√10

Step-by-step explanation:

Given: x^{2} +\frac{1}{x^{2} } =38

(x+\frac{1}{x} )^{2} =x^{2} +\frac{1}{x^{2} } +2                               [ (a+b)^{2} =a^{2} +b^{2} +2ab]

(x+\frac{1}{x} )^{2} =38+2

(x+\frac{1}{x} )^{2} =40

(x+\frac{1}{x} )= ±√40

(x+\frac{1}{x} ) = ±2√10                                       --------(1)

(x+\frac{1}{x} )^{2}- (x-\frac{1}{x} )^{2}=4                               [ (a+b)^{2} -(a-b)^{2} =4ab ]

  40    -   (x-\frac{1}{x}) ^{2}  = 4

 (x-\frac{1}{x}) ^{2}\\=  36

(x-\frac{1}{x}) = ± 6                                            ----------(2)

We know that:

x^{2} -\frac{1}{x^{2} } =(x-\frac{1}{x} )(x+\frac{1}{x} )

x^{2} -\frac{1}{x^{2} } =     ±6  × ±2√10                       [from (1) and (2)]

x^{2} -\frac{1}{x^{2} } = ± 12√10

       

Similar questions