Math, asked by sumanvarma8969, 7 hours ago

if ( x^2 + 1/x^2) =4 , find the values of ( x^2 + 1/x^2), ( x^4 + 1/x^4 ) ​

Answers

Answered by Adrito2
0

Answer:

Value of x² + 1/x² is 4 and value of x^4 + 1/x^4 is 14

i.e.

x² + 1/x²=4

x^4 + 1/x^4=14

Step-by-step explanation:

x² + 1/x²=4

So x² + 1/x²=4

( x^4 + 1/x^4 ) ​=(x²)² + (1/x²)²

                      =(x² + 1/x²)²-2.x².1/x²      

                      =4²-2                                     [Putting value of x² + 1/x²]

                      =16-2

                      =14

Ans:-Value of x² + 1/x² is 4 and value of x^4 + 1/x^4 is 14

Hope it helps you =)

Answered by RvChaudharY50
2

Solution :-

→ (x² + 1/x²) = 4

squaring both sides we get,

→ (x² + 1/x²)² = (4)²

using (a + b)² = a² + b² + 2ab in LHS,

→ (x²)² + (1/x²)² + 2 * (x²) * (1/x²) = 16

→ x⁴ + 1/x⁴ + 2 = 16

→ (x⁴ + 1/x⁴) = 16 - 2

→ (x⁴ + 1/x⁴) = 14 (Ans.)

also, another values is same as given value .

Learn more :-

solution of x minus Y is equal to 1 and 2 X + Y is equal to 8 by cross multiplication method

https://brainly.in/question/18828734

Similar questions