Math, asked by chhayasingh65, 10 months ago

if x^2+ 1/x^2 =43 find the value of x^3- 1/x^3

Answers

Answered by Saby123
5

In the above Question , the following information is given -

x² + 1 / x² = 43 .

To Find -

x³ - 1 / x³

Solution -

x² + 1 / x² = 43 .

=> x² + 1 / x² - 2 = 43 - 2

=> x² + 1 / x² - 2 = 41

=> ( x - 1 / x ) ² = 41

=> x - 1 / x = 41½

Cubing -

(x - 1 / x ) ³ = 41^ { 3 / 2 }

=> x³ - 1 / x³ - 3 ( x )( 1 / x )( x - 1 / x ) = 41^ { 3 / 2 }

=> x³ - 1 / x³ - 3 × 41½ = 41 ^ { 3 / 2 }

=> x³ - 1 / x³ = 41 ^ { 3 / 2 } - 41½

This is the answer ...

_____________

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
3

\huge\sf\blue{Given}

\sf x^2 + \dfrac{1}{x^2} = 43

\rule{110}1

\huge\sf\gray{To \:Find}

\sf x^3 - \dfrac{1}{x^3}

\rule{110}1

\huge\sf\purple{Steps}

So now,

\sf x^2 + \dfrac{1}{x^2} - 2 = 43 - 2

\sf x^2 + \dfrac{1}{x^2} - 2 = 41

\sf (x^2 - \dfrac{1}{x^2})^2 = 41

\sf (x^2 - \dfrac{1}{x^2} = {41}\dfrac{1}{2}

On cubing,

\sf (x - \dfrac{1}{x}^3) = 41^\frac{3}{2}

\sf x^3 - \dfrac{1}{x^3} - 3(x)(\dfrac{1}{x})(x- \dfrac{1}{x}) = 41^\frac{3}{2}

\sf x^3 - \dfrac{1}{x^3} = 4{1}^{\frac{3}{2}} + 41 \dfrac{1}{2}

\sf\orange{x^3 - \dfrac{1}{x^3} = 41^\frac{3}{2} - 41 \dfrac{1}{2}}

\rule{170}3

Similar questions