if x^2+1/x^2=5
find x^5+1/x^5
Answers
Answered by
3
a⁵ + b⁵ = (a + b)(a⁴ – a³b + a²b² – ab³ + b⁴)
= (a + b)(a⁴ + b⁴ + a²b² – ab³ – a³b )
= (a + b)(a⁴ + b⁴ + a²b² – ab (a² + b²))
a = x
b = 1/x
x² + 1/x² = 5 (given)
(x+1/x)² = x² + 1/x² + 2*x*1/x
(x+1/x)² = 5 + 2
(x+1/x)² = 7
x+1/x = √7
(x² + 1/x²)² = x⁴ + 1/x⁴ + 2*x²*(1/x²)
5² = x⁴ + 1/x⁴ + 2
25 - 2 =x⁴ + 1/x⁴
x⁴ + 1/x⁴ = 23
from formula;
x⁵ + 1/x⁵ = (x + 1/x)[(x⁴ + 1/x⁴) + (x² * 1/x²) -(x * 1/x)(x² + 1/x²) )
= (√7) [ (23) + (1) - (1)(5)]
= √7 ( 24 -5)
= 17√7
= (a + b)(a⁴ + b⁴ + a²b² – ab³ – a³b )
= (a + b)(a⁴ + b⁴ + a²b² – ab (a² + b²))
a = x
b = 1/x
x² + 1/x² = 5 (given)
(x+1/x)² = x² + 1/x² + 2*x*1/x
(x+1/x)² = 5 + 2
(x+1/x)² = 7
x+1/x = √7
(x² + 1/x²)² = x⁴ + 1/x⁴ + 2*x²*(1/x²)
5² = x⁴ + 1/x⁴ + 2
25 - 2 =x⁴ + 1/x⁴
x⁴ + 1/x⁴ = 23
from formula;
x⁵ + 1/x⁵ = (x + 1/x)[(x⁴ + 1/x⁴) + (x² * 1/x²) -(x * 1/x)(x² + 1/x²) )
= (√7) [ (23) + (1) - (1)(5)]
= √7 ( 24 -5)
= 17√7
Similar questions