Math, asked by harry463774, 10 months ago

If x^2 +1 /X^2 = 51, find x-1 / x​

Answers

Answered by rhea5941
0

Step-by-step explanation:

x

2

+

x

2

1

\bold{And\: We \:Need \:To\: Find...}AndWeNeedToFind...

\bold{{x} - \frac{1}{x}}x−

x

1

So Now Let's Move For Solution ....

\underline{\bold{Solution}}

Solution

Now According To Question It's Given That {x}^{2} + \frac{1}{ {X}^{2} } = 51x

2

+

X

2

1

=51

Now To Find ...

\bold{x - \frac{1}{x}}x−

x

1

Follow The Simple Step ...

\underline{\bold{Step-1)\:Find\:The\: Suitable\: Identity\:}}

Step−1)FindTheSuitableIdentity

So The MosT Suitable Identity That Can Be Used Here Is...

\boxed{\bold{{(a - b)}^{2} \:= {a}^{2} \:+ \:{b}^{2} -2ab}}

(a−b)

2

=a

2

+b

2

−2ab

\underline{\bold{Step-2)\:Apply\: The \:Identity\: To \: Find\: Value \:Of\:\:{x}\:- \frac{1}{x} }}

Step−2)ApplyTheIdentityToFindValueOfx−

x

1

Now Applying This Identity ..

Where

\underline{\bold{a\: = \:x \:\:And\: b \:= 1/x \:}}

a=xAndb=1/x

\bold{ {(x\: - \:\frac{1}{x})}^{2} = \: {x}^{2} \:+ \:\frac{1}{ {x}^{2} } - 2(x) (\frac{1}{x} )}(x−

x

1

)

2

=x

2

+

x

2

1

−2(x)(

x

1

)

That Is ...

\bold{{(x - \frac{1}{x})}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } \: - 2 \: (by \: \: \: cancelling \: x)}(x−

x

1

)

2

=x

2

+

x

2

1

−2(bycancellingx)

So Now In Question Its Given That

\bold{ {x}^{2} + \frac{1}{ {x}^{2} }}x

2

+

x

2

1

Now Putting This Value In the Obtained Equation We Have ...

\bold{ {(x - \frac{1}{x}) }^{2} = 51 - 2}(x−

x

1

)

2

=51−2

That Is ...

\bold{ {(x - \frac{1}{x} )}^{2} = 49}(x−

x

1

)

2

=49

Now Moving Square To RHS We Have

\bold{x - \frac{1}{x} = \sqrt{49}}x−

x

1

=

49

That Is ...

\bold{x - \frac{1}{x} = 7}x−

x

1

=7

So Now We Have Value Of

\boxed{\bold{x - \frac{1}{x} = 7}}

x−

x

1

=7

\underline{\bold{Hence\:The\: Required\:Answer\:Is\:....}}

HenceTheRequiredAnswerIs....

\boxed{\boxed{\bold{7}}}

7

\Large{\bold{Thanks...}}Thanks...

Answered by vatskartik46
0

Step-by-step explanation:

see this you will get

please Mark me the brainliest

Attachments:
Similar questions