Math, asked by deval3064, 1 year ago

If x^2+1/x^2=51 then find x+1/x

Answers

Answered by Anonymous
20

Answer:

x +  \frac{1}{x}  =  \sqrt{53}

Step-by-step explanation:

given equation

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 51

find to

x +  \frac{1}{x}

 {(x +  \frac{1}{x}) }^{2}  =  {x}^{2}  + 2(x)( \frac{1}{x} ) +  \frac{1}{ {x}^{2} }  \\  \\  {(x +  \frac{1}{x}) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2(1) \\  \\  {(x +  \frac{1}{x}) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\  \\  {(x +  \frac{1}{x}) }^{2}  = 51 + 2 \\  \\  {(x +  \frac{1}{x}) }^{2}  = 53 \\  \\ x +  \frac{1}{x}  =  \sqrt{53}

Similar questions