If x^2+1/x^2=6 find x^3+1/x^3
Answers
Answered by
2
Step-by-step explanation:
x²+1/x²=6
(x+1/x)²-2(x)(1/x)=6
(x+1/x)²-2=6
(x+1/x)²=8
x+1/x=2√2
x³+1/x³=(x+1/x)(x²+1/x²-(x)(1/x))
=(2√2)(6-1)
=2√2(5)
=10√2
x³+1/x³=10√2
pls mark as branliest
Answered by
0
Answer:
What is the value of x^3 +1/x^3,if the value of x^2 +1/x^2 is 6?
What is the best course to learn electric vehicle development?
We know, a2+b2=(a+ b)2−2ab. Here, substitute a=x,b=1x. We have,
x2+1x2=(x+1x)2−2(x)(1x)
=> x2+1x2=(x+1x)2−2
Given, x2+1x2=6
=> (x+1x)2=8
=> (x+1x)=±22–√
Now, we want x3+1x3. It can be factorised into:
x3+1x3= (x+1x)(x2+1x2−1)
=> x3+1x3=±22–√∗(6−1)
=> x3+1x3=±102–√
If it is mentioned that x is a positive number, then the value would be 102–√.
Hope this helps!
Similar questions