Math, asked by SUPERMANGangwal, 1 year ago

if x^2+1/x^2=66 ,find x^3-1/x^3

Answers

Answered by TEJAS11111111111
0
hahakaksjd smakahnaa
Answered by Anonymous
15

\huge{\underline{\underline{\huge{\bold{AnsweR \: :-}}}}}

Given :

x^2 + \frac{1}{x^2}

To find : The Value of x^2 -  \frac{1}{x^3}

Solution :

x^2 + \frac{1}{x^2} = 66

Subtract and add 2 \times x \times\frac{1}{x}

x + \frac{1}{x^2} - 2 \times x \times \frac{1}{x} + 2 \times x \times \frac{1}{x} = 66

(x - \frac{1}{x})^{2}  = 66 - 2 \times x \times \frac{1}{x}

(x - \frac{1}{x})^{2}  = 64

Taking root both side :

x -\frac{1}{x} = 8

Cubing both side,

(x - \frac{1}{x})^{3}  =  {8}^{3}

 {x}^{3}  - \frac{1}{ {x}^{3} } - 3 \times x \times \frac{1}{x}(x - \frac{1}{x}) = 512

 {x}^{3} -  \frac{1} { {x}^{3} } - 3 \times (8) = 512

 {x}^{3} -  \frac{1} { {x}^{3} } = 512 + 24

 {x}^{3} -  \frac{1} { {x}^{3} } = 536

So, the required value is  {x}^{3} -  \frac{1} { {x}^{3} } = 536

Similar questions