Math, asked by Anonymous, 1 year ago

IF X∧2+1/X∧2=7 , FIND THE VALUE OF X∧3+1/X∧3






PLS ANSWER ITS AN EMERGENCY

Answers

Answered by adinann
4
Hi !

So,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7 \\

We can write it as,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 9 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 =  9 \\

We know that,

 {a}^{2}  +  {b}^{2}  + 2ab =  {(a + b)}^{2}  \\

Assuming a = x
and b = 1/x

We can write,

 {(x +  \frac{1}{x} )}^{2}  =  {(3)}^{2}  \\  \\ x +  \frac{1}{x}  = 3

Cubing both the sides we get,

 {(x +  \frac{1}{x}) }^{3}  =  {(3)}^{3}  \\

Using the identity :

 {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b) \\

 {(x)}^{3}  +  {( \frac{1}{x} )}^{3}  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} )  = 27\\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(3) = 27 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 9 = 27 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 27 - 9 \\  \\  {x}^{3}  +   \frac{1}{{x}^{3} }  = 18

Any doubt arises, please ask ^-^
Similar questions