Math, asked by shcharvi, 1 year ago

if x^2+1/x^2=7 then find the value of x^3+1/x^3

Answers

Answered by anustarnoor
155
(x + 1/x) = x + 1/x + 2
 (x + 1/x) = 9
x + 1/x = 3 
now
 (x + 1/x) = x + 1/x + 3(x + 1/x)
27 = x + 1/x + 9
or
 x + 1/x = 27 - 9 = 18
it should be the answer 
Answered by mindfulmaisel
70

The value of x^{3}+\frac{1}{x^{3}} \text { is } \bold{18 \text { or }-18}

Solution:

Given x^{2}+\frac{1}{x^{2}}=7

We know that (a+b)^{2}=a^{2}+2 a b+b^{2}

Similarly, \left(x+\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}+2 \times x \times \frac{1}{x}

=x^{2}+\frac{1}{x^{2}}+2

=7+2=9

\Rightarrow\left(x+\frac{1}{x}\right)^{2}=9

\Rightarrow x+\frac{1}{x}=3 \text { or }-3     

Case I : \left(x+\frac{1}{x}\right)=3  

We know that (a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}

Similarly, \left(x+\frac{1}{x}\right)^{3}=x^{3}+\frac{1}{x^{3}}+3 \times x^{2} \times \frac{1}{x}+3 \times x \times \frac{1}{x^{2}}

=x^{3}+\frac{1}{x^{3}}+3 x+\frac{3}{x}

=x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)

x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right)

=3 \times 3 \times 3-3 \times 3

=27-9=18

Case II : \left(x+\frac{1}{x}\right)=-3

x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right)

=(-3) \times(-3) \times(-3)-3 \times(-3)

=-27+9=-18

Similar questions