Math, asked by amanrrajkkumar, 10 months ago

if x^2+1/x^2=7 then find the value x^3+1/x^3​

Answers

Answered by Anonymous
32

{\huge{\red{\sf{Given}}}}\begin{cases}\leadsto \bf{x^{2}+\dfrac{1}{x^{2}}=7}\end{cases}

{\huge{\red{\sf{To\:Find}}}}\begin{cases}\leadsto \sf{x^{3}+\dfrac{1}{x^{3}}}\end{cases}

\huge\red{\underline{\bf{\green{Answer}}}}

We have,

\sf{\red{\mapsto x^{2}+\dfrac{1}{x^{2}}=7}}

\sf{\implies x^{2}+\dfrac{1}{x^{2}}=7}

\sf{\implies x^{2}+\dfrac{1}{x^{2}}+2\times x\times \dfrac{1}{x}=7+2\times x\times \dfrac{1}{x}}

\sf{\implies (x+\dfrac{1}{x}) ^{2}=7+2}

\large\purple{\boxed{\bf{\orange{(a+b) ^{2}=a^{2}+b^{2}+2ab}}}}

\sf{\implies (x+\dfrac{1}{x}) ^{2}=9}

\sf{\implies (x+\dfrac{1}{x}) ^{2}=(3)^{2}}

\sf{\implies x+\dfrac{1}{x}=3}

{\underline{\red{\sf{(\leadsto Ignoring\:negative\:value\:of\:3)}}}}

______________________________________

\purple{\bf{\mapsto Cubing\:both\:sides}}

\sf{\implies (x+\dfrac{1}{x}) ^{3}=3^{3}}

\sf{\implies x^{3}+\dfrac{1}{x^{3}}+\dfrac{3x}{x}(x+\dfrac{1}{x}) =27}

\sf{\implies x^{3}+\dfrac{1}{x^{3}}+3\times 3=27}

\sf{\implies x^{3}+\dfrac{1}{x^{3}} =27-9}

{\underline{\pink {\bf{\mapsto x^{3}+\dfrac{1}{x^{3}}=18}}}}

Answered by tejasvimaligi
1

Answer:

Given Equation is x^2 + 1/x^2 = 7

We know that (x + 1/x)^2 = x^2 + 1/x^2 + 2 * x * 1/x

                                         = x^2 + 1/x^2 + 2

                                        = 7 + 2

                                        = 9

                          (x + 1/x) = 3

Now,

(x^3 + 1/x^3) = (x + 1/x)^3 - 3 * x * 1/x * (x + 1/x)

                     = (x + 1/x)^3 - 3(x + 1/x)

 

                    = (3)^3 - 3(3)

                   = 27 - 9

                   = 18.

Hope this helps!

Similar questions