If x^2+1/x^2=7find 7x^3+8^x-7/x^3-8/x
Answers
Given :-
- x² + 1/x² = 7
To Find :-
- 7x³ + 8x - (7/x³) - (8/x) = ?
Solution :-
→ 7x³ + 8x - (7/x³) - (8/x)
Re - arranging ,
→ (7x³ - 7/x³) + (8x - 8/x)
→ 7(x³ - 1/x³) + 8(x - 1/x)
using a³ - b³ = (a - b)(a² + b² + ab) Now,
→ 7[(x - 1/x)(x² + 1/x² + 1)] + 8(x - 1/x)
Taking (x - 1/x) common Now,
→ (x - 1/x) [ 7(x² + 1/x² + 1) + 8 ]
Putting given value of x² + 1/x² now, we get,
→ (x - 1/x) [ 7( 7 + 1) + 8 ]
→ (x - 1/x) [ 7 * 8 + 8 ]
→ (x - 1/x) [ 56 + 8 ]
→ (x - 1/x) * 64 --------------- Equation (1).
__________________
Now,
→ x² + 1/x² = 7
Subtracting 2 Both Sides we get,
→ x² + 1/x² - 2 = 7 - 2
Comparing LHS with a² + b² - 2ab = (a - b)² , we get,
→ (x - 1/x)² = 5
Square - Root Both sides Now,
→ (x - 1/x) = ± √5 --------------- Equation (2).
__________________
Putting Equation (2) in Equation (1) Now , we get,
→ Ans :- 64√5 or (-64√5) .
_________________________
- x²+1/x²=7
_________________________
- 7x^3+8^x-7/x^3-8/x
_________________________
➩7x³+8x - (7/x³) -(8/x)
➩(7x³-7/x³)+(8x-8/x)
➩7(x³-1/x³)+8(x-1/x)
➩7[(x-1/x)(x²+1/x²+1)] + 8(x-1/x)
➩(x-1/x)[7(x²+1/x²+1)+8]
➩(x-1/x)[7(7+1)+8]
➩(x-1/8)[56+8]
➩(x-1/x)×64 ____(EQ.1)
_________________________
➩x²+1/x² =7
➩x²+1/x²-2 = 7-2
➩(x-1/x²)=5
➩(x-1/x)=±√5 ______(EQ.2)
_________________________
By comparing both equations,
➠64√5 or (-64√5)