Math, asked by shashirawat8575, 10 months ago

If x^2 +1/x=27 find the value of each of x+1/x

Answers

Answered by TrickYwriTer
3

Step-by-step explanation:

Given -

  • x² + 1/x² = 27

To Find -

  • Value of x + 1/x

Now,

→ x² + 1/x² = 27

Adding 2 × x × 1/x both sides :-

→ x² + 1/x² + 2 × x × 1/x = 27 + 2 × x × 1/x

→ (x + 1/x)² = 29

→ x + 1/x = √29

Hence,

The value of x + 1/x is √29.

Answered by Anonymous
12

GIVEN:-

  •  x^2+\frac{1}{x}=27

TO FIND:-

  •  x+\frac{1}{x}

Now,

\huge{(x+\frac{1}{x})^2=x^2+\frac{1}{x^2}+2}

\huge{(x+\frac{1}{x})^2=27+2}

\huge{(x+\frac{1}{x})^2=29}

\huge{x+\frac{1}{x}=\sqrt{29}}

●●●●●EXTRA INFORMATION●●●●●

\textbf{(a+b)^2=a^2+2ab+b^2)}

\textbf{(a-b)^2=a^2-2ab+b^2)}

Similar questions