Math, asked by neelamuniyal1246, 2 months ago

if (X ^2 + 1)/X = 3 whole 1/3
and X > 1 then find:
(i)x-1/x
(ii)x^3-1/x​

Attachments:

Answers

Answered by ItsMagician
49

\green{\mid{\fbox{\tt{ ❝Aɴꜱᴡᴇʀ੭❞ }}\mid}}

\tt  \frac{ {x}^{2} + 1 }{x}  = 3 \frac{1}{3}  \\  \\

\tt x +  \frac{1}{x}  =  \frac{10}{3}  \\  \\

Squaring both sides,

\tt (x +  \frac{1}{x})^{2}  = ( \frac{10}{3} )^{2}  \\  \\

\tt {x}^{2}  + ( { \frac{1}{x} })^{2}  + 2(x)( \frac{1}{x} ) =  \frac{100}{9} \\  \\

\tt {x}^{2}  + ( { \frac{1}{x} })^{2}  =  \frac{100}{9}  - 2 \\  \\

\tt {x}^{2}  + ( \frac{1}{x} )^{2}  =  \frac{82}{9}  \\  \\

Now,

\tt (x -  \frac{1}{x} )^{2}  =  {x}^{2} + ( { \frac{1}{x} })^{2}   - 2(x)( \frac{1}{x} ) \\  \\

\tt = ( \frac{82}{9}  - 2) \\  \\

\tt = ( \frac{64}{9} ) \\  \\

\tt (x -  \frac{1}{x} ) =  \sqrt{ (\frac{64}{9} )}  = ( \frac{8}{3}) = 2 \frac{2}{3}   \\  \\

Now,

\tt ( {x}^{3}  -  \frac{1}{ {x}^{3} } ) = (x -  \frac{1}{x} )  + ( {x}^{2}  +  \frac{1}{x} )^{2} +(x)( \frac{1}{x}  ) \\  \\

\tt = ( \frac{8}{3} )( \frac{82}{9}  + 1) \\  \\

\tt (\frac{8}{3} )( \frac{91}{9} ) =  \frac{728}{27}  = 26 \frac{26}{7}  \\  \\

━━━━━━━━━━━━━━━━━━━━

\purple{\mid{\fbox{\tt{ ❝Tʜᴀɴᴋ Yᴏᴜ❞ }}\mid}}

Similar questions