Math, asked by amolkate9255, 9 months ago

If x^2+1/x=5/2 find the value of x-1/x

Answers

Answered by Anonymous
0

Answer:

(1/2)^1/2

Step-by-step explanation:

x^2 + 1/x^2 =5/2

subtracting 2 on both sides,

x^2 + 1/x^2 -2= 5/2 -2 .... equation 1

observe that ,

(x - 1/x)^2 = x^2 -2*(x)*(1/x) + 1/x^2= x^2 + 1/x^2 -2

which is same as equation 1, hence putting this value

(x - 1/x)^2 = 5/2 -2

(x - 1/x)^2 = 1/2

x - 1/x = (1/2)^1/2

if you find this helpful, please mark it brainliest :)

Answered by chaitragouda8296
0

Given :

 \frac{{x}^{2}  + 1}{x} =  \frac{5}{2}

To find :

 \frac{x - 1}{x}  =  \:  \:

Solution :

 \frac{ {x}^{2} + 1 }{ \times }  =  \frac{5}{2}  \\  \\ by \:  \: cross \:  \: multiplying  \:  \: we \: get \: \\  \\2( {x}^{2}  + 1) = 5 \times x \\  \\ 2 {x}^{2}  + 2 = 5 x \\  \\ 2 {x}^{2}  - 5x + 2 = 0 \\  \\ 2 {x}^{2}  - 4x - x + 2 = 0 \\  \\ 2x(x - 2) - 1(x - 2) = 0 \\  \\ (x - 2)(2x - 1) = 0 \\   \\ \\ x = 2 \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \: x =  \frac{1}{2}

If x = 2 then ,,,,

 =  \frac{x - 1}{x} \\  \\   =  \frac{2 - 1}{2}  \\  \\  \frac{1}{2}

If x = 1/2 then ,,,,

 =  \frac{x - 1}{x}  \\  \\  =  \frac{ \frac{1}{2}  - 1}{ \frac{1}{2} }  \\  \\   =  \frac{ \frac{1 - 2}{2} }{ \frac{1}{2} }  \\  \\  =   \frac{ - 1}{2}  \times  \frac{2}{1}  \\  \\  =  \frac{ - 1}{1}  \\  \\  =  - 1

 \frac{x - 1}{x}  =  \frac{1}{2}  \\</strong></p><p><strong> \frac{x - 1}{x}  =  - 1

Hope it's helpful ....

Please mark it as Brainliest ......

Similar questions