if (x^2+1)(y^2+1)+16=8(x+y) , then find x^3+y^3
Answers
Answer:
x³ + y³ = 52
Step-by-step explanation:
if (x^2+1)(y^2+1)+16=8(x+y) , then find x^3+y^3
(x² + 1)(y² + 1) + 16 = 8(x+y)
=> x²y² + 1 + x² + y² + 16 = 8(x + y)
=> x²y² + 1 - 2xy + 2xy + x² + y² + 16 -8(x + y) = 0
=> (xy - 1)² + (x + y)² + 16 - 8(x+y) = 0
=> (xy -1)² + (x + y - 4)² = 0
as square can not be negative
=> (xy -1)² = 0 & (x + y - 4)² =0
=> xy = 1 & x + y = 4
x³ + y³ = ( x+ y)³ -3xy(x+y)
=> x³ + y³ = 4³ - 3(1)(4)
=> x³ + y³ = 64 - 12
=> x³ + y³ = 52
Question :
If (x²+1)(y²+1)+16 = 8(x+y),
then find the value of x³ + y³
Answer :
x³ + y³ = 52
Step-by-step explanation :
we will expand it and get
x²y² + x² + y² + 1 + 16 = 8 ( x + y )
[ x² + y² + 2xy ] - 2xy + 1 + 16 - 8 ( x+y ) + x²y² = 0
[ ( x + y )² - 8 ( x + y ) + 16 ] + [ x²y² - 2xy + 1 ] = 0
[ ( x + y ) - 4]² + [ xy - 1 ]² = 0
so now we get,
x+y = 4 and xy = 1
x³y³ = ( x + y )² - 3xy ( x + y )
= 4³ - 3 (1) (4)
= 64 - 12
= 52