If x =2√15/√5+√3, find x+√3/x-√3 + x+√5/x-√5
AvmnuSng:
write question clearly ....
Answers
Answered by
16
x+√3/x-√3 + x+√5/x-√5
substitute the value of "x"
=> 2√15/√5+√3 +√3/2√15/√5+√3-√3 + 2√15/√5+√3+√5/2√15/√5+√3-√5
2√15+√15+3/√5+√3/2√15-√15-3/√5+√3 + 2√15+5+√15/√5+√3/2√15-5- √15/√5+√3
3√15+3/√15-3 + 3√15+5/√15-5
(√15-5)(3√15+3) + (√15-3)(3√15+5)/(√15-3)(√15-5)
45-15+3√15-15√15+45-15+5√15-9√15/30-5√15-3√15
60-16√15/30-8√15
2(30-8√15)/30-8√15
then the answer we get is 2
substitute the value of "x"
=> 2√15/√5+√3 +√3/2√15/√5+√3-√3 + 2√15/√5+√3+√5/2√15/√5+√3-√5
2√15+√15+3/√5+√3/2√15-√15-3/√5+√3 + 2√15+5+√15/√5+√3/2√15-5- √15/√5+√3
3√15+3/√15-3 + 3√15+5/√15-5
(√15-5)(3√15+3) + (√15-3)(3√15+5)/(√15-3)(√15-5)
45-15+3√15-15√15+45-15+5√15-9√15/30-5√15-3√15
60-16√15/30-8√15
2(30-8√15)/30-8√15
then the answer we get is 2
Answered by
55
[tex]\frac{(6\sqrt3-3\sqrt5)(4\sqrt3+3\sqrt5)}{(4\sqrt3-3\sqrt5)(4\sqrt3+3\sqrt5)} + \frac{(5\sqrt3-2\sqrt5)(5\sqrt3 + 4\sqrt5)}{(5\sqrt3 - 4\sqrt5)(5\sqrt3 + 4\sqrt5)} \\ \\ \frac{24*3+18\sqrt{15}-12\sqrt{15}-3^2*5}{4^2*3 - 3^2*5} + \frac{5^2*3+20\sqrt{15}-10\sqrt{15}-8*5}{25*3 - 16*5} \\ \\ \frac{27+6\sqrt{15}}{3} + \frac{35+10\sqrt{15}}{-5} \\ \\ 9+2\sqrt{15}-7-2\sqrt{15} \\ \\ 2 \\ [/tex]
Similar questions