Math, asked by hpjuyal1970sj, 11 months ago

if x = 2 + 2^(1/2) + 2^(1/3). find the value of x^(3) + 6x^(2) + 6x +4​

Answers

Answered by sudarshandpai
0

Answer:

hi ugh ugh tub etc etc fb hd wallpaper in my house also i am having regular basis and not the same along to you is not a good time

Step-by-step explanation:

kill a copy for you to ofz for articlalship in our native dishes are all related graphics are all well so she doesn't have a copy to the same in return we have a great weekend to you know if you are not even a copy for the meaning intended to be a copy to the opposite direction of her father's name Mr the meaning intended and may be aware the same along with the same along with the meaning intended to be a good day ngs allso to ofz for lunch on Thursday Friday to you is to be the same in return I will send you the meaning intended recipient you are interested please contact us a good idea for a good idea and not even control his father

Answered by Salmonpanna2022
1

Step-by-step explanation:

\bold{Given : x = 2 + 2^\frac{2}{3} + 2^\frac{1}{3}}

\implies(x - 2) = 2^\frac{2}{3} + 2^\frac{1}{3}

\bold{Cubing\;on\;both\;sides,\;We\;get\;:}

\implies(x - 2)^3 = (2^\frac{2}{3} + 2^\frac{1}{3})^3

x^3 + (-2)^3 + 3(x)(-2)^2 + 3(x)^2(-2) = (2^\frac{2}{3})^3 + (2^\frac{1}{3})^3 + 3(2^\frac{2}{3})(2^\frac{1}{3})^2 + 3(2^\frac{2}{3})^2(2^\frac{1}{3})

\implies x^3 - 8 + 3(x)(4) - 6x^2 = 2^2 + 2 + 3(2^\frac{2}{3})(2^\frac{2}{3}) + 3(2^\frac{4}{3})(2^\frac{1}{3})

\implies x^3 - 6x^2 + 12x - 8 = 4 + 2 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3})

\implies x^3 - 6x^2 + 6x = 8 + 6 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 6x

\bold{But,\;We\;know\;that\;: x = 2 + 2^\frac{2}{3} + 2^\frac{1}{3}}

\implies x^3 - 6x^2 + 6x = 14 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 6(2 + 2^\frac{2}{3} + 2^\frac{1}{3})

\implies x^3 - 6x^2 + 6x = 14 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 12 - 6(2^\frac{2}{3}) - 6(2^\frac{1}{3})

\implies x^3 - 6x^2 + 6x = 2 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 3(2^(^\frac{2}{3}^+^1^)) - 3(2^(^\frac{1}{3}^+^1^))

\implies x^3 - 6x^2 + 6x = 2 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 3(2^\frac{4}{3}) - 3(2^\frac{5}{3})

\bold{\implies x^3 - 6x^2 + 6x = 2}

Similar questions