Math, asked by gorakhchand6, 1 year ago

if x^2-2=2^2/3+2^2/3 then prove 2x^3+6x=5

Answers

Answered by karanchy
9
x^2-2=2^2/3+2^(here is )-2/3

x^2-2=2^2/3+2^-2/3
x^2=2^2/3+2+2^-2/3
x^2=(2^1/3)^2 2^2/3 2^1/3 +(2^-1/3)^2
x^2= (2^1/3+ 2^-1/3)^2
[ x= (2^1/3+ 2^-1/3) ]
now use the value x in 2x^3+6x
then it come 5
Answered by swethassynergy
8

Correct –Question

If x^{2} -2=2^{\frac{2}{3} } +2^{-\frac{2}{3} }  then prove  2x^{3} -6x=5 .

Answer:

It is proved that 2x^{3} -6x=5.

Step-by-step explanation:

Given:

Equation  x^{2} -2=2^{\frac{2}{3} } +2^{-\frac{2}{3} }.

To Find:

It is to be proved that 2x^{3} -6x=5.

Solution:

As given- equation x^{2} -2=2^{\frac{2}{3} } +2^{-\frac{2}{3} }.

x^{2} -2=2^{\frac{2}{3} } +2^{-\frac{2}{3} }

x^{2} =2^{\frac{2}{3} }+2 +2^{-\frac{2}{3} }

x^{2} =2^{\frac{2}{3} }+2.2^{\frac{2}{3} }.2^{-\frac{2}{3} } +2^{-\frac{2}{3} }

x^{2} =(2^{\frac{1}{3} })^{2} +2.2^{\frac{2}{3} }.2^{-\frac{2}{3} } +(2^{-\frac{1}{3} })^{2}

x^{2} = [2^{\frac{1}{3} } +2^{-\frac{1}{3} }]^{2}

x =2^{\frac{1}{3} } +2^{-\frac{1}{3} }

Let the 2^{\frac{1}{3} }  be p.  Then p^{3}  =2.

x=p+\frac{1}{p}

It is to be proved  the value  2x^{3} -6x=5.

LHS=2x^{3} -6x

         =2(p+\frac{1}{p} )^{3} -6(p+\frac{1}{p})

        =2[p^{3} +\frac{1}{p^{3} } +3(p+\frac{1}{p})]-6(p+\frac{1}{p})

         =2(p^{3} +\frac{1}{p^{3} }) +6(p+\frac{1}{p})-6(p+\frac{1}{p})

         =2(p^{3} +\frac{1}{p^{3} })

Putting the value of  p^{3}  =2.

        =2(2 +\frac{1}{2} )

        =2(\frac{5}{2} )

         =5

         =RHS

LHS=RHS

Hence, it  is proved that 2x^3-6x=5.

Similar questions