Math, asked by deveshkatlam8273, 11 months ago

If x=2+2√3
Then find x^2-1/x^2

Answers

Answered by LovelyG
6

Answer:

\large{\underline{\boxed{\sf {x}^{2}   + \frac{1}{x {}^{2} }   =  \frac{170 + 63 \sqrt{3} }{8} }}}

Step-by-step explanation:

Given that ;

x = 2 + 2√3

Now, find the value of 1/x.

\implies \sf  \frac{1}{x}  =  \frac{1}{2 + 2 \sqrt{3} }  \\  \\ \implies \sf  \frac{1}{x}  = \frac{1}{2 + 2 \sqrt{3} }  \times  \frac{2 - 2 \sqrt{3} }{2 - 2 \sqrt{3} }  \\  \\ \implies \sf  \frac{1}{x}  = \frac{2 - 2 \sqrt{3} }{(2) {}^{2}  - (2 \sqrt{3} ) {}^{2} }  \\  \\ \implies \sf  \frac{1}{x}  = \frac{2 - 2 \sqrt{3} }{4 - 12}  \\  \\ \implies \sf  \frac{1}{x}  = \frac{2(1 -  \sqrt{3}) }{ - 8}  \\  \\ \implies \sf  \frac{1}{x}  = \frac{ - (1 -  \sqrt{3} )}{ 4}  \\  \\ \implies \sf  \frac{1}{x}  = \frac{ \sqrt{3} - 1 }{4}

Find the value of x² ;

\implies \sf   {x}^{2}  = (2 + 2 \sqrt{3} ) {}^{2}  \\  \\ \implies \sf   {x}^{2}  = (2) {}^{2}  + (2 \sqrt{3}) {}^{2}  + 2 \times 2 \times 2 \sqrt{3}  \\  \\ \implies \sf   {x}^{2}  = 4 + 12 + 8 \sqrt{3}  \\  \\ \implies \sf   {x}^{2}  = 16 + 8 \sqrt{3}

Also, find (1/x)² ;

\implies \sf  \frac{1}{x {}^{2} }  =( \frac{ \sqrt{3} - 1 }{4} ) {}^{2} \\  \\  \implies \sf  \frac{1}{x {}^{2} }  = \frac{3 + 1 - 2 \sqrt{3} }{16}  \\  \\ \implies \sf  \frac{1}{x {}^{2} }  = \frac{4 - 2 \sqrt{3} }{16}  \\  \\ \implies \sf  \frac{1}{x {}^{2} }  = \frac{2 -  \sqrt{3} }{8}

Find x² - (1/x)² ;

\implies \sf  {x}^{2}   + \frac{1}{x {}^{2} }  =16 + 8 \sqrt{3}  +  \frac{2 -  \sqrt{3} }{8}  \\  \\ \implies \sf  {x}^{2}   + \frac{1}{x {}^{2} }   =  \frac{128 + 64 \sqrt{3}  + 2 -   \sqrt{3}}{8}  \\  \\ \implies \sf  {x}^{2}   + \frac{1}{x {}^{2} }   =  \frac{170 + 63 \sqrt{3} }{8}

Similar questions