Math, asked by kiranmayeereddy, 7 months ago

if x=2√2+√7 find x+1/x​

Answers

Answered by anindyaadhikari13
3

\star\:\:\:\bf\large\underline\blue{Question:-}

  • If x=2\sqrt{2}+\sqrt{7}, find x+\frac{1}{x}.

\star\:\:\:\bf\large\underline\blue{Solution:-}

x = 2 \sqrt{2}  +  \sqrt{7}

 \implies \frac{1}{x}  =  \frac{1}{2 \sqrt{2}  +  \sqrt{7} }

 \implies \frac{1}{x}  =  \frac{1}{2 \sqrt{2}  +  \sqrt{7} }  \times  \frac{2 \sqrt{2}  -  \sqrt{7} }{2 \sqrt{2}  -  \sqrt{7} }

 \implies \frac{1}{x}  =  \frac{2 \sqrt{2}  -  \sqrt{7} }{(2 \sqrt{2}  )^{2} + ( \sqrt{7})^{2}  }

 \implies \frac{1}{x}  =  \frac{2 \sqrt{2}  -  \sqrt{7} }{8 - 7  }

 \implies \frac{1}{x}  =  \frac{2 \sqrt{2}  -  \sqrt{7} }{1}

 \implies \frac{1}{x}  =  2 \sqrt{2}  -  \sqrt{7}

So,

x +  \frac{1}{x}  = 2 \sqrt{2}  +  \sqrt{7}  + 2 \sqrt{2}  -  \sqrt{7}

 \implies x +  \frac{1}{x}  = 4 \sqrt{2}

\star\:\:\:\bf\large\underline\blue{Answer:-}

  •  x +  \frac{1}{x}  = 4 \sqrt{2}
Answered by MohakBiswas
4

\bf\large\blue{\underline{Question}\::-}

  •  \bf{If \: x = 2 \sqrt{2}  + \sqrt{7}, \: then \: find \: x +  \frac{1}{x} }

\bf\large\blue{\underline{Solution}\::-}

Given,

x = 2 \sqrt{2}  +  \sqrt{7}

 \therefore  \:  \frac{1}{x}  =  \frac{1}{2 \sqrt{2}  +  \sqrt{7} }

 \frac{1}{x}  =  \frac{1}{2 \sqrt{2}  +  \sqrt{7} }  \times  \frac{2 \sqrt{2 }  -  \sqrt{7} }{2 \sqrt{2}  -  \sqrt{7} }

 =  \frac{2 \sqrt{2}  -  \sqrt{7} }{ {(2 \sqrt{2}) }^{2} -  {( \sqrt{7} )}^{2}  }

 =  \frac{2 \sqrt{2} -  \sqrt{7}  }{8 - 7}

 \therefore \:  \frac{1}{x}  = 2 \sqrt{2}  -  \sqrt{7}

So, \: x +  \frac{1}{x}  = 2 \sqrt{2}  +  \sqrt{7}  + 2 \sqrt{2}  -  \sqrt{7}

 = 4 \sqrt{2}

\bf\large\blue{\underline{Answer}\::-}

  • The value of x + \frac{1}{x} is 4 \sqrt{2}

_____________________________________________________

\text\blue{Hope it helps you.}

Similar questions