Math, asked by balarajusunchikalaba, 1 month ago

if x=2+2power 2/3+2 power 1/3 then find the value of x power 3-6x square +6x​

Answers

Answered by rakeshdubey33
0

Answer:

 {x}^{3}  - 6 {x}^{2}  + 6x = 14

Step-by-step explanation:

Given :

x \:  =  \: 2 +  {2}^{ \frac{2}{3} }  +  {2}^{ \frac{1}{3} }

To find :

 {x}^{3}  - 6 {x}^{2}  + 6x

Solution :

x - 2 =  {2}^{ \frac{2}{3} }  +  {2}^{ \frac{1}{3} }  \\ cubing \: on \: both \: the \: sides \\  {(x - 2)}^{3}  =  {( {2}^{ \frac{2}{3} }  +  {2}^{ \frac{1}{3} }) }^{3}  \\  {x}^{3}  - 8 - 6x(x - 2) =   \\ {( {2}^{ \frac{2}{3} }) }^{3}  +   {( {2}^{ \frac{1}{3} }) }^{3}  +  \\ 3 \times  {2}^{ \frac{2}{3} }  \times  {2}^{ \frac{1}{3} } ( {2}^{ \frac{2}{3} }  +  {2}^{ \frac{1}{3} } )

 =>  {x}^{3}  - 6 {x}^{2}  + 12x - 8 \:  =  \\  {2}^{2}  + 2 + 3 \times 2( {2}^{ \frac{2}{3} }  +  {2}^{ \frac{1}{3} } ) \\ 6  \: + 6x \\ (since \:  \:  {2}^{ \frac{2}{3} }  +  {2}^{ \frac{1}{3} }  = x)

 =>  {x}^{3}  - 6 {x}^{2}  + 12x - 8 = 6 + 6x \\  =>   {x}^{3}  - 6 {x}^{2}  + 6x = 6 + 8 \\  = 14

Hence, the answer.

Answered by Salmonpanna2022
1

Step-by-step explanation:

\bold{Given : x = 2 + 2^\frac{2}{3} + 2^\frac{1}{3}}

\implies(x - 2) = 2^\frac{2}{3} + 2^\frac{1}{3}

\bold{Cubing\;on\;both\;sides,\;We\;get\;:}

\implies(x - 2)^3 = (2^\frac{2}{3} + 2^\frac{1}{3})^3

x^3 + (-2)^3 + 3(x)(-2)^2 + 3(x)^2(-2) = (2^\frac{2}{3})^3 + (2^\frac{1}{3})^3 + 3(2^\frac{2}{3})(2^\frac{1}{3})^2 + 3(2^\frac{2}{3})^2(2^\frac{1}{3})

\implies x^3 - 8 + 3(x)(4) - 6x^2 = 2^2 + 2 + 3(2^\frac{2}{3})(2^\frac{2}{3}) + 3(2^\frac{4}{3})(2^\frac{1}{3})

\implies x^3 - 6x^2 + 12x - 8 = 4 + 2 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3})

\implies x^3 - 6x^2 + 6x = 8 + 6 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 6x

\bold{But,\;We\;know\;that\;: x = 2 + 2^\frac{2}{3} + 2^\frac{1}{3}}

\implies x^3 - 6x^2 + 6x = 14 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 6(2 + 2^\frac{2}{3} + 2^\frac{1}{3})

\implies x^3 - 6x^2 + 6x = 14 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 12 - 6(2^\frac{2}{3}) - 6(2^\frac{1}{3})

\implies x^3 - 6x^2 + 6x = 2 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 3(2^(^\frac{2}{3}^+^1^)) - 3(2^(^\frac{1}{3}^+^1^))

\implies x^3 - 6x^2 + 6x = 2 + 3(2^\frac{4}{3}) + 3(2^\frac{5}{3}) - 3(2^\frac{4}{3}) - 3(2^\frac{5}{3})

\bold{\implies x^3 - 6x^2 + 6x = 2}

Similar questions