Math, asked by littlecreator78, 1 month ago

if x= (2 + √3), find all value of x² + 1 / x². ​

Answers

Answered by gouravgupta65
1

Answer:

x = 2+ √3

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  = 2 -  \sqrt{3}

 {x}^{2}   +  \frac{1}{ {x}^{2} }  \\   \\ = 2 +  \sqrt{3 }  + 2  - \sqrt{3}  \\  = 4

Answered by Anonymous
8

Answer:

x = 2 + √3

1/x = 1/2 + √3

= 1 × (2 - √3)/(2 + √3) (2 - √3)

= (2 - √3)/(2^2 - √3^2)

= (2 - √3)/4 - 3

= (2 - √3)

Therefore

x^2 = (2 + √3)

= (2)^2 + (√3)^2 + 2 × 2 × √3

= 4 + 3 + 4√3

= 7 + 4√3

1/x^2 = (2 - √3)^2

= (2)^2 + (√3)^2 - 2 × 2 × √3

= 4 + 3 - 4√3

= 7 - 4√3

x^2 + 1/x^2

= (7 + 4√3) + (7 - 4√3)

= 7 + 4√3 + 7 - 4√3

= 7 + 7 + 4√3 - 4√3

= 14

Step-by-step explanation:

hope it's helps you

Similar questions