Math, asked by ajitsingh43, 5 hours ago

If x = 2 + √3, find the value of (i) x + 1/x (
ii) x – 1/x
(iii) x^2 + 1/x^2
(iv) x^2 – 1/x^2

Answers

Answered by MizBroken
8

Given that

x = 2 + √3

1/x = 1/2 + √3

= 1 × (2 - √3)/(2 + √3) (2 - √3)

= (2 - √3)/(2^2 - √3^2)

= (2 - √3)/4 - 3

= (2 - √3)

Therefore ,

x^2 = (2 + √3)

= (2)^2 + (√3)^2 + 2 × 2 × √3

= 4 + 3 + 4√3

= 7 + 4√3

1/x^2 = (2 - √3)^2

= (2)^2 + (√3)^2 - 2 × 2 × √3

= 4 + 3 - 4√3

= 7 - 4√3

x^2 + 1/x^2

= (7 + 4√3) + (7 - 4√3

✪============♡============✿

 \huge \pink{✿} \red {C} \green {u} \blue {t} \orange {e}  \pink {/} \red {Q} \blue {u} \pink {e} \red {e} \green {n} \pink {♡}

Similar questions