Math, asked by saswatisingh793, 2 months ago

If x = 2 –√3, find the value of
(x -  \frac{1}{x} ) {}^{3}

Answers

Answered by YagneshTejavanth
1

Answer:

Value of ( x - 1/x )³ is - 24√3.

Step-by-step explanation:

x = 2 - √3

Find the value of 1/x

 \implies  \dfrac{1}{x}  =  \dfrac{1}{2 -  \sqrt{3} }

Multiply both numerator and denominator with 2 + √3

 \implies  \dfrac{1}{x}  =  \dfrac{1}{2 -  \sqrt{3} }  \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 \implies  \dfrac{1}{x}  =  \dfrac{2 +  \sqrt{3} }{(2 -  \sqrt{3})(2 +  \sqrt{3})  }

Using algebraic identity (x - y) (x + y) = x² - y²

 \implies  \dfrac{1}{x}  =  \dfrac{2 +  \sqrt{3} }{ {2}^{2} -  {( \sqrt{3}) }^{2}  }

 \implies  \dfrac{1}{x}  =  \dfrac{2 +  \sqrt{3} }{ 4-  3  }

 \implies  \dfrac{1}{x}  =  \dfrac{2 +  \sqrt{3} }{1}

 \implies  \dfrac{1}{x}  =  2 +  \sqrt{3}

Now ( x - 1/x )³

 \implies  \bigg(x  -   \dfrac{1}{x} \bigg)^3= \bigg(2  - \sqrt{3}  -(2 + \sqrt{3} ) \bigg)^3

 \implies  \bigg(x  -   \dfrac{1}{x} \bigg)^3= \big(2  - \sqrt{3}  -2  -  \sqrt{3} \big)^3

 \implies  \bigg(x  -   \dfrac{1}{x} \bigg)^3= \big(  - 2 \sqrt{3} \big)^3

 \implies  \bigg(x  -   \dfrac{1}{x} \bigg)^3= (  - 2 )^3( \sqrt{3})^3

 \implies  \bigg(x  -   \dfrac{1}{x} \bigg)^3=  - 8( 3\sqrt{3})

 \implies \boxed{  \bigg(x  -   \dfrac{1}{x} \bigg)^3=  - 24\sqrt{3}}

Therefore the value of ( x - 1/x )³ is - 24√3.

Similar questions