Math, asked by faizakhatib90, 11 months ago

If x=2-√3 ,find the value of (x-1/x)^3

Answers

Answered by Anonymous
32

Answer:

 - 24 \sqrt{3}

Step-by-step explanation:

Given:

x = 2 -  \sqrt{3}

To find :

(x -  \frac{1}{x} )^{3}

 \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3} }

Now we need to rationalise the following value to make it easier to solve,

 \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

In the denominator we can use the identity,

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{(2) ^{2} - ( \sqrt{3} ) ^{2}  }

 \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{4 - 3}

 \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{1}

 \frac{1}{x}  = 2 +  \sqrt{3}

Now we need to find the value of x-1/x and cube the following,

x -  \frac{1}{x}  = 2 -  \sqrt{3}  - (2 +  \sqrt{3} )

x -  \frac{1}{x}  = 2 -  \sqrt{3}  - 2 -  \sqrt{3}

 x -  \frac{1}{x}  =  - 2 \sqrt{3}

Now cubing this value,

(x -  \frac{1}{x} )^{3}  = ( - 2 \sqrt{3} ) ^{3}

(x -  \frac{1}{x} ) ^{3}  =  - 24 \sqrt{3}

 - 24 \sqrt{3}

Answered by Saby123
2

 = 2 -  \sqrt{3}  \\  \\  =  >  \dfrac{1}{x}  = 2 +  \sqrt{3}  \\  \\  =  > x  - \dfrac{1}{x} =  - 2 \sqrt{3}

Cubing ,

=> - 8 × 3 √ 3

=> -24√3

Similar questions