Math, asked by adi62773p8i1ft, 1 year ago

If x=2+√3, find the value of x+1/x

Answers

Answered by BrainlyQueen01
382
Hey mate!

_______________________

Given :

x = 2 +  \sqrt{3}

To find :

x +  \frac{1}{x}

Solution :

x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }   \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{(2) {}^{2}  - ( \sqrt{3}) {}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 -  \sqrt{ 3}

Now,

x +  \frac{1}{x}  \\  \\  \implies 2 +   \cancel{\sqrt{3}}  + 2 -  \cancel{ \sqrt{3}}  \\  \\ \implies 2 + 2 \\  \\ \implies 4

Hence,

The answer is 4.

_______________________

Thanks for the question !

☺️☺️☺️☺️
Answered by wifilethbridge
343

Answer:

4

Step-by-step explanation:

Given : x=2+\sqrt{3}

To Find : find the value of x+\frac{1}{x}

Solution:

x+\frac{1}{x}

Since x=2+\sqrt{3}

To find \frac{1}{x}

x=2+\sqrt{3}

\frac{1}{x} =\frac{1}{2 +\sqrt{3} } \times \frac{2 - \sqrt{3} }{2 -  \sqrt{3}}

\frac{1}{x} =\frac{2 -\sqrt{3} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} }

\frac{1}{x}= \frac{2 -\sqrt{3}}{4 - 3}

\frac{1}{x}= 2- \sqrt{ 3}

Substitute the values

x+\frac{1}{x}

2+\sqrt{3}+2- \sqrt{ 3}

4

Hence  the value of x+\frac{1}{x} is 4

Similar questions