Math, asked by rg371804, 1 year ago

If x=2+√3, find the value of x+1/x

Answers

Answered by Anonymous
1
HEY !!!!

HERE IS UR ANSWER-------

Given,

x = 2 + √3

1/x = 1 / 2 + √3

On rationalizing the denominator,

= (1 / 2 + √3) × (2 - √3 / 2 - √3)

= 2 - √3 / (2)^2 - (√3)^2

= 2 - √3 / 4 - 3

= 2 - √3

Therefore ,

x + 1/x

= 2 + √3 + 2 - √3

= 2 + 2

= 4.
Answered by atul103
0
hey brother!

Here is your Answer!

X = 2+√3

then

==> 1/X = 1/2+√3

now multiply 2-√3 both side

==>
 \frac{2 -  \sqrt{3} }{ {2}^{2}  -  \sqrt{3 {}^{2} } }  \\  \\  =  \frac{2 -  \sqrt{3} }{4 - 3 }  \\  \\ =  2 -  \sqrt{3}  \\  \\ so \: x +  \frac{1}{x}  = 2 +  \sqrt{3 }  + 2 -  \sqrt{3}  \\  \\ x +  \frac{1}{x}  = 4 \: ans
Similar questions