Math, asked by simrancore00, 1 month ago

if x=2+√3 find the value of x+1/x​

Answers

Answered by Anonymous
1

Given

 \sf \to \: x = 2 +  \sqrt{3}

To find

  \sf \to\: x +  \dfrac{1}{x}

If

 \sf \to \: x = 2 +  \sqrt{3}

then

 \sf \to \:  \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }

Now Rationalize the Denominator

\sf \to \:  \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2  -  \sqrt{3} }{2 -  \sqrt{3} }

\sf \to \:  \dfrac{1 }{x}  =  \dfrac{2 -  \sqrt{3} }{(2 +  \sqrt{3})(2 -  \sqrt{3})  }

\sf \to \:  \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{2 {}^{2}  -   (\sqrt{3}) {}^{2}  }

\sf \to \:  \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{4 -   {3}}  = 2 -  \sqrt{3}

Now we have to find

 \sf \to \: x +  \dfrac{1}{x}

Put the value on equation

 \tt \to \: 2 +  \sqrt{3}  + 2 -  \sqrt{3}

 \sf \to \: 4

Answer is 4

Similar questions