Math, asked by dahiyashubham168, 7 days ago

if x=(2+√3) find the value of (x^+1/x^)​

Answers

Answered by Anonymous
69

Answer:

Hey mate!

_______________________

Given :

x = 2 + \sqrt{3} x=2+ </p><p>3

To find :

x + \frac{1}{x} x+ </p><p>x</p><p>1

Solution :

\begin{gathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 - \sqrt{ 3} \end{gathered} </p><p>x=2+ </p><p>3

Now,

\begin{gathered}x + \frac{1}{x} \\ \\ \implies 2 + \cancel{\sqrt{3}} + 2 - \cancel{ \sqrt{3}} \\ \\ \implies 2 + 2 \\ \\ \implies 4\end{gathered} </p><p>x+ </p><p>x</p><p>1

Hence,

The answer is 4.

_______________________

Answered by mansisonawane78
5

Answer:

thank you @ marathi girl for the answer

Similar questions