Math, asked by perwaizahmad111, 11 months ago

if x=2-√3, find the value of (x-1\x) cube​

Answers

Answered by Brâiñlynêha
15

Given :-

x= 2-√3

To find :-

\sf \bigg(x-\dfrac{1}{x}\bigg)^3

A.T.Q :-

\sf \dfrac{1}{x}=\dfrac{1}{2-\sqrt{3}}\\ \\ \longmapsto \sf \dfrac{1}{x}= \dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}}\\ \\ \longmapsto\sf \dfrac {1}{x}= \dfrac{2+\sqrt{3}}{(2)^2-(\sqrt{3})^2}\\ \\ \longmapsto\sf \dfrac{1}{x}=\dfrac{2+\sqrt{3}}{4-3}\\ \\\longmapsto\sf \dfrac{1}{x} = \dfrac{2+\sqrt{3}}{1}\\ \\\longmapsto\sf \dfrac{1}{x}= 2+\sqrt{3}

Now the value of \sf \bigg(x-\dfrac{1}{x}\bigg)

We have :-

\sf x=2-\sqrt{3}\ \ \ \ \ \dfrac{1}{x} =2+\sqrt{3}\\ \\\longmapsto\sf \bigg(x-\dfrac{1}{x}\bigg)= [2-\sqrt{3} -(2+\sqrt{3})]\\ \\\longmapsto\sf  \bigg(x-\dfrac{1}{x}\bigg)= (\cancel{2}-\sqrt{3} \cancel{-2}-\sqrt{3})\\ \\ \longmapsto\sf \bigg(x-\dfrac{1}{x}\bigg)= -2\sqrt{3}

So find the value of \sf \bigg(x-\dfrac{1}{x}\bigg)^3

\longmapsto\sf \bigg(x-\dfrac{1}{x}\bigg)^3= (-2\sqrt{3})^3\\ \\\longmapsto\sf \bigg(x-\dfrac{1}{x}\bigg)^3= ( -2\sqrt{3}\times -2\sqrt{3}\times -2\sqrt{3})\\ \\ \longmapsto\sf \bigg(x-\dfrac{1}{x}\bigg)^3 = (-8\times 3\sqrt{3})\\ \\ \longmapsto\sf \bigg(x-\dfrac{1}{x}\bigg)^3= -24\sqrt{3}

\bigstar{\boxed{\sf{\bigg(x-\dfrac{1}{x}\bigg)^3= -24\sqrt{3}}}}

Answered by Anonymous
42

Answer:

 - 24 \sqrt{3}

Step-by-step explanation:

x = 2 -  \sqrt{3}

 \frac{1}{x }  =  \frac{1}{2 -  \sqrt{3} }

Now we need to rationalise the following,

 =  \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

(a - b)(a + b) = a ^{2}  - b ^{2}

 \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{4 - 3}

 \frac{1}{x}  = 2 +  \sqrt{3}

Now we need to find the value of x-1/x and cube the value,

x -  \frac{1}{x}  = 2 -  \sqrt{3}  - (2 +  \sqrt{3} )

x -  \frac{1}{x}  = 2 -  \sqrt{3 }  - 2 -  \sqrt{3}

x -  \frac{1}{x}  =  - 2 \sqrt{3}

Now cubing this value,

(x -  \frac{1}{x} ) ^{3}  = ( - 2 \sqrt{3} ) ^{3}

(x -  \frac{1}{x} ) ^{3}  =  - 24 \sqrt{3}

Similar questions