If x = (2 -√3). Find the value of x^2 + 1/x^2.
Answers
Answered by
0
x = (2 - √3)
1/x = 1/(2 - √3)
= (2 + √3)/(2 - √3)(2 + √3)
= (2 + √3)/(2² - √3²)
=(2 + √3)/(4 -3) = (2 + √3)
hence , 1/x = (2 + √3)
so, x + 1/x = (2 - √3) + (2 + √3) = 4
now,
x² + 1/x² = (x + 1/x )² -2
=( 4)² -2 = 14 (answer )
1/x = 1/(2 - √3)
= (2 + √3)/(2 - √3)(2 + √3)
= (2 + √3)/(2² - √3²)
=(2 + √3)/(4 -3) = (2 + √3)
hence , 1/x = (2 + √3)
so, x + 1/x = (2 - √3) + (2 + √3) = 4
now,
x² + 1/x² = (x + 1/x )² -2
=( 4)² -2 = 14 (answer )
Answered by
0
x=(2-√3)
1/x= 1/(2-√3)
=(1×2+√3)/(2-√3)(2+√3). (rationalizing the denominator)
=(2+√3)/{2²-(√3)²}
=(2+√3)/(4-3)
=(2+√3)/1 = 2+√3
x= 2-√3 , 1/x=2+√3
(x+1/x)²= x²+(1/x)²+2×x×1/x
(2-√3+2+√3)²= x²+(1/x)²+2
4²=x²+(1/x)²+2
16=x²+(1/x)²+2
16-2=x²+(1/x)²
14=x²+(1/x)²
hope this helps
1/x= 1/(2-√3)
=(1×2+√3)/(2-√3)(2+√3). (rationalizing the denominator)
=(2+√3)/{2²-(√3)²}
=(2+√3)/(4-3)
=(2+√3)/1 = 2+√3
x= 2-√3 , 1/x=2+√3
(x+1/x)²= x²+(1/x)²+2×x×1/x
(2-√3+2+√3)²= x²+(1/x)²+2
4²=x²+(1/x)²+2
16=x²+(1/x)²+2
16-2=x²+(1/x)²
14=x²+(1/x)²
hope this helps
Similar questions