Math, asked by avtarsingh8, 9 months ago

If x=2+√3. find the value of x^2+1/x^2​

Answers

Answered by singhvishalkumar824
3

Answer:x = 2 + √3

1/x = 1/2 + √3

= 1 × (2 - √3)/(2 + √3) (2 - √3)

= (2 - √3)/(2^2 - √3^2)

= (2 - √3)/4 - 3

= (2 - √3)

Therefore ,

x^2 = (2 + √3)

= (2)^2 + (√3)^2 + 2 × 2 × √3

= 4 + 3 + 4√3

= 7 + 4√3

1/x^2 = (2 - √3)^2

= (2)^2 + (√3)^2 - 2 × 2 × √3

= 4 + 3 - 4√3

= 7 - 4√3

x^2 + 1/x^2

= (7 + 4√3) + (7 - 4√3)

= 7 + 4√3 + 7 - 4√3

= 7 + 7 + 4√3 - 4√3

= 14

mark me brainliest

Answered by Anonymous
17

AnswEr :

  •  \ \boxed{\boxed{\sf x^2 + \dfrac{1}{x^2} = 14}}

Explanation :

Given that

 \sf \: x = 2 +  \sqrt{3}

Firstly,we need to calculate the value of 1/x.

Here,

 \sf \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }

Rationalising the denominator

 \implies \:  \sf \:  \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \implies \:  \sf \:  \dfrac{1}{x}  =  \frac{2 -  \sqrt{3} }{(2 +  \sqrt{3})(2 -  \sqrt{3} ) }

Expanding the denominator : a² - b² = (a + b)(a - b)

Thus,

2² - (√3)²

= 4 - 3

= 1

Thus,

 \implies \:  \sf \:  \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \implies \:  \boxed{ \sf \:  \frac{1}{x}  = 2  -  \sqrt{3} }

Now,

  \sf \: {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \\   \\  \longrightarrow \:  \sf \: (2 +  \sqrt{3} ) {}^{2}  + (2 -  \sqrt{3} ) {}^{2}  \\  \\  \longrightarrow \:  \sf \: (7 + 2 \sqrt{3} ) + (7 - 2 \sqrt{3} ) \\   \\  \longrightarrow \: 14

The value of above expression is 14.

Similar questions