Math, asked by kumarb8311, 4 months ago

if x=2 +√3 , Find the value of x^2 + 1/x^2​

Answers

Answered by pantpriyanshu31
0

Answer:

well first x²=[ 2+✓3]² = 7 + 4✓3

now 1/x² = 1/ 7+4✓3

using rationalisation

multiply and divide this term with 7-4✓3

hence 1/x²= 7-4✓3

therefore x²+1/x² = 7+4✓3 +7-4✓3= 14

Answered by Anonymous
2

Solution:-

:- Given

 \sf \implies \: x = 2 +  \sqrt{ 3}

:- To Find The value

 \sf \to \:  {x}^{2}  +  \dfrac{1}{{x}^{2} }

Now Take

 \sf \implies \: x = 2 +  \sqrt{ 3}

 \sf \implies \:  \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \implies \:  \frac{1}{ \sf{x}}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\    \implies \sf \:  \frac{1}{x} =   \:  \frac{2 -  \sqrt{3} }{4 - 3}  =  \frac{2 -  \sqrt{3} }{1}

So We can write

\sf \implies \:  {x}^{2}  +  \dfrac{1}{{x}^{2} }  =  \bigg(x +  \dfrac{1}{x}  \bigg)^{2}

Now put the value of x and 1/x

 \sf \implies \: (2 +  \sqrt{3}  + 2 -  \sqrt{3} ) {}^{2}

\sf \implies \: (2 +   \cancel{\sqrt{3}}  + 2 -   \cancel{\sqrt{3} }) {}^{2}

 \rm \implies \: (4) {}^{2}  = 16

Answer is 16

Similar questions