if x=2+√3, find the value of x^2v+ 1/x ^2
Answers
Answered by
2
Answer:
7+2√3+(7-2√3)/37
Step-by-step explanation:
please mark my ans as brainliest please
Answered by
5
Step-by-step explanation:
Question:-
If x = 2 + √3, find the value of x² + 1/x²
To find:-
The value of x² + 1/x² = ?
Solution:-
Let's solve the problem
We have: x = 2+√3
∴ 1/x = 1/2+√3
The denominator is 2+√3. Multiplying the numerator and denomination by 2-√3, we get
➟ 1/2+√3 × 2-√3/2-√3
➟ 1(2-√3)/(2+√3)(2-√3)
⬤ Applying Algebraic Identity
(a+b)(a-b) = a² - b² to the denominator
We get,
➟ 2-√3 /(2)² - (√3)²
➟ 2 - √3 / 4 - 3
➟ 2 - √3 / 1
➟ 2 -√3
∴ x + 1/x = 2+√3 + 2-√3
x + 1/x = 2 + 2
x + 1/x = 4
Squaring on both sides we get,
(x + 1/x)² = (4)²
➟ x² + 2(x)(1/x) + (1/x)² = 16
➟ x² + 2 + 1/x² = 16
➟ x² + 1/x² = 16 - 2
➟ x² + 1/x² = 14.
Answer:-
Hence, the value of x² + 1/x² = 14.
Used Formulae:-
- (a+b)(a-b) = a² - b²
:)
Similar questions